Te)

N
|MS

N
O

Data-Driven Discovery of Novel Antigen Targets:
A Scalable Bioinformatics Pipeline Bordeau
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Introduction Conclusion

e Antigen-targeting therapies hold promise but face ~90% trial failure, mainly due e Applied to 18 cancer cohorts, our pipeline identified ~216 candidate antigens per
to low efficacy or toxicity. Indication (range: 41-556), including 8 FDA-approved targets.

e Early, data-driven target selection can triple oncology approval rates by e On average, 8 candidates per cancer type outperformed FDA-approved
Improving selection and reducing failures?. benchmarks in efficacy and safety, while this approach also flagged potential

e \We present a scalable platform that mines public omics data to identify and rank on-target off-tumor toxicities.
novel antigen targets across cancers. e These results highlight the pipeline’'s potential to accelerate discovery of novel,

clinically relevant oncology targets.
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e location types datasets atlases datasets databases genes
Microarray datasets Protein expression e All data sources were curated using an Al-assisted, human-supervised pipeline
and mapped to a proprietary ontology for consistent annotation.
4 A e Gene names were standardized across sources using a common reference.
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Knowledge bases Publication T ) disease atlases comprising 7,885 tumor and 1569 healthy samples, using
Drug h batch-correction? to preserve biological signal while removing technical artifact.
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