

A priori Estimation of Reproducibility Odds Informs the Sizing of Omic Data Cohorts

M. Colange¹, A. Nordor¹, and A. Behdenna¹.

¹Epigene Labs, Paris, France

Introduction

- Fragmented Data Hinders Progress: Omic studies are constrained by fragment or poorly integrated datasets, weakening generalizability and reproducibility.
- Data Integration is Under-Resourced: Data integration is typically approached on a "best effort" basis, with little guidance on how much effort or resources are truly needed.
- Costs Remain Invisible: The scientific and opportunity costs of limited integration are widely acknowledged but rarely quantified in a rigorous and systematic way.

Contribution

- Quantifying What's at Stake: We introduce mathematical formulas that link cohort size and statistical power, making the cost of limited integration explicit.
- Practical Tools for Study Design: These ready-to-use formulas apply broadly across data types and can inform both new and secondary analyses.
- Enabling Strategic Commitment: By revealing the price of underpowered studies, we aim to shift data integration from an ad-hoc task to a justified, well-resourced priority.

- Data- and model-agnostic: our formulas only depend on the number of features modeled. This guarantees their wide applicability.
- Fast estimates: our formulas can be used to inform project feasibility, before experimental design is finalized and before data is collected.
- Untapped potential: without data integration capabilities, public data remains under-utilized. Our study shows that only 15% of GEO data would improve study precision by a factor 8 to 11.
- Addressing biases in available data: whatever the cohort size, representativity is key. Data integration allows tailor-made cohorts, built to alleviate biases.
- Challenges in data heterogeneity: evolving disease classifications, non-standardized nomenclatures, improving sequencing technologies, changing gene name references...
- Solutions exist: batch effect correction, gene name harmonization, Al-powered clinical metadata cleaning...

Would you rather invest in under-powered de novo data, or in data integration capabilities?

