Accelerating antigen-targeting therapy discovery with a scalable pan-cancer bioinformatics platform NNACR
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Figure 1: Epigene Labs’ antigen target discovery platform
(LogFC = Log Fold Change, FDR = False Discovery Rate, HPA = Human Protein Atlas, HPM = Human Proteome Map, PDB = Proteomics DB, GTEx = Genotype-Tissue Expression, TCGA = The Cancer Genome Atlas, GEO = Genome Expression Omnibus, MSigDB = The Molecular Signatures Database, CCLE = Cancer Cell Line Encyclopedia, FDA = Food and Drug Administration)
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