

Empirical Bayes Method for scRNA-Seq Batch Effects

Poster 2490 M. Colange¹, G. Appé¹, L. Meunier¹, S. Weill¹, A. Nordor¹, A. Behdenna¹. ¹Epigene Labs, Paris, France

Batch effect correction adapted to the unique distributions of single-cell transcriptomes

Research question

Technical variability across datasets

• Datasets from different sources suffer from technical effects, caused by differences during sequencing such as protocol, or equipment.

Impact on single-cell data

Raw data with uncorrected batch effects

UMAP 1

Figure 1: UMAP before batch effect correction. 2 Kidney datasets GSE159115, SCP1288 (See Results part for cohort details)

Approach

Limitations of Existing Methods

- Methods developed for bulk RNA-Seq often fail to account for the sparsity and variability of single-cell data.
- Many single-cell batch correction tools return only low-dimensional embeddings, without gene-level corrected matrices. limiting downstream analyses and reducing data interpretability.

We adapt the Empirical Bayes framework to better fit the distributional complexity of single-cell data, enabling effective batch correction while preserving biological signal.

RNA content, and cell-to-cell variability.

Contact Akpéli Nordor, PharmD, PhD (akpeli@epigenelabs.com).

The authors have no conflict of interest to declare.